How to Design Efficient Street Lighting-Part-4

 

(F) Lighting Pollutions

  • Light pollution is an unwanted consequence of outdoor lighting and includes such effects as sky glow, light trespass, and glare. 
  • 30 to 50% of all light pollution is produced by roadway lighting that shines wasted light up and off target.

(1) Glare:

  • Glare is the condition of vision in which there is discomfort or a reduction in the ability to see significant objects. Glare affects human vision and it is subdivided into four components, Disability Glare, Discomfort Glare, Direct Glare and Indirect Glare.
  • By origin
  1. Direct Glare
  2. Indirect (reflected) Glare
  • By effect on people
  1. Disability Glare
  2. Discomfort Glare
  • Disability glare:
  • Disability glare is the glare that results in reduced visual performance and visibility.
  • Since disability glare reduces the ability to perceive small contrasts.
  • It can impair important visual tasks in traffic such as detecting critical objects, controlling headlights, and evaluating critical encounters, making glare a potential danger for road users.
  • LED light sources can provide very high luminance lev­els which may cause glare. For this reason, LED lamps are commonly equipped with diffusers to reduce this luminance.
  • Disability glare may vary for dif­ferent individuals and it can be calculated objectively.
  • In a particu­lar illuminated environment, the human eye will be able to detect differences in luminance down to a certain threshold. This threshold can be compared for a situa­tion in the same environment when a source of glare is added. By comparing these thresholds, the threshold increment can be derived.
  • Discomfort glare:
  • Discomfort glare is the glare producing discomfort. It does not necessarily interfere with visual performance or visibility.
  • As vertical light angles increase, discomforting glare also increases
  • Discomfort glare, on the other hand, is a subjective phenomenon and there is no method for its Rating.
  • Although the 9-point De Boer scale (ranging from “1” for “unbearable” to “9” for “unno­ticeable”) is the most widely used in the field of auto­motive and public lighting.
  • Direct Glare:
  • Direct glare is caused by excessive light entering the eye from a bright light source. The potential for direct glare exists anytime one can see a light source. With direct glare, the eye has a harder time seeing contrast and details.
  • A system designed solely on lighting levels, tends to aim more light at higher viewing angles, thus producing more potential for glare.
  • Exposed bright light source, for example a dropped lens cobra head or floodlight causes of direct glare.
  • Direct glare can be minimized with careful equipment selection as well as placement.

  • Figure illustrates two examples of exterior lighting that results in glare. 

  •  Fig shows how full cutoff luminaries (Shielded Luminaires) can minimize this direct glare. In exterior applications, use fully shielded luminaires that directs light downwards towards the ground.
  • Indirect Glare:
  • Indirect glare is caused by light that is reflected to the eye from surfaces that are in the field of view – often in the task area.
  • Indirect Glare can be minimized with the type and layout of lighting equipment. Direct the light away from the observer with the use of low glare, fully shielded luminaries.
  • As the uniformity ratio increases (poor uniformity), object details become harder to see.
  • For roadway lighting, good uniformity shows evenly lighted pavement. However, to meet small target visibility criteria, a non uniform roadway surface may be better.
  • There should be a balance between uniform perception and detecting objects on the road. Also, emphasis is put on horizontal surface uniformity. In reality, vertical surfaces may require more lighting in order to improve guidance.
  • How to Reduce Glare:
  • Glare and light trespass are more concern when installing floodlights.
  • Use shielded Light should be use to reduce Glare.
  • Higher mounting heights can more effective in controlling spill light, because floodlights with a more controlled light distribution (i.e., narrower beam) may be used, and the floodlights may be aimed in a more downward direction, making it easier to confine the light to the design area.
  • Lower mounting heights increase the spill light beyond the property boundaries. To illuminate the space satisfactorily, it is often necessary to use floodlights with a broader beam and to aim the floodlights in directions closer to the horizontal than would occur when using higher mounting heights.
  • Lower mounting heights make bright parts of the floodlights more visible from positions outside the property boundary, which can increase glare.

(2) Sky glow:

  • Sky Glow is brightening of the night sky caused by outdoor lighting.
  • Light that is emitted directly upward by luminaries or reflected from the ground is scattered by dust and gas molecules in the atmosphere, producing a luminous background. It has the effect of reducing one’s ability to view the stars in Night. 

  • How to Reduce Sky Glow
  • While it is difficult to accurately model sky glow, at this point it is presumed that the most important factors are light output and lamp spectral characteristics, light distribution from the luminaire, reflected light from the ground, and aerosol particle distribution in the atmosphere.
  • If the quantity of light going into the sky is reduced, then sky glow is reduced. Thus, to reduce sky glow by
  • By using full cutoff luminaires to minimize the amount of light emitted upward directly from the luminaire.
  • Reduce Lighting Level.
  • Make practice to Turn off unneeded lights
  • Limited Lighting hours in outdoor sales areas, parking areas, and signages
  • Installing Low-Pressure Sodium light sources, which allow astronomers to filter the line spectra from telescopic images.

 (3) Light Trespass:

  • Light trespass is condition when spill (Unwanted or Unneeded) light from a streetlight or floodlight enters a window and illuminates an indoor area.
  • How to Reduce Trespass
  • Select luminaries, locations, and orientations to minimize spill light onto adjacent properties.
  • Use well-shielded luminaries.
  • Keep floodlight aiming angles low so that the entire beam falls within the intended lighted area.

Difference between full cutoffs and fully shielded:

  • The full cutoff has is luminaries that have no direct up light (no light emitted above horizontal) and 10% of light intensity between 80° and 90°.
  • The term full cutoff is often substituted for the term fully shielded.
  • The both terms are not equivalent. Fully shielded luminaires emit no direct up light, but have no limitation on the intensity in the region between 80° and 90°
  • Luminaires that are full cutoff, cutoff, semi cutoff, and non cutoff , may also qualify as fully shielded.

  • There is also a confusing assumption that a luminaire with a flat lens qualifies as a full cutoff luminaries. While this may be true or not in some Lighting Fixtures case.

  • Fully shielded means, a lighting fixture constructed in such a manner that the bulb should be fully recessed into Fixture so that all light is directed downward below the horizontal.
  • The fixture is angled so the lamp is not visible below the barrier (no light visible below the horizontal angle).

(G) Selection of Luminas:

(1) Types of Lighting Source

  • Street Lights are mostly Low-pressure sodium (LPS), High-pressure sodium (HPS), Metal halide and Light emitting diodes (LED).
  • LPS is very energy efficient but emits only a narrow spectrum of pumpkin-colored light that some find to be undesirable.
  • LPS is an excellent choice for lighting near astronomical observatories and in some environmentally sensitive areas.
  • HPS is commonly used for street lighting in many cities. Although it still emits an orange-colored light, its coloring is more “true to life” than that of LPS.
  • Where it’s necessary to use white light, there are metal halide and LEDs.

  • High-pressure sodium lamps should be used for expressways, main roads, secondary roads and branch roads.
  • Low-power metal halide lamps should be used in mixed traffic roads for motor vehicles and pedestrians in residential areas.
  • Metal halide lamps can be used for motor vehicle traffic, such as city centers and commercial centers, which require high color identification.
  • Metal halide lamps, CFL lamps are used at Pedestrian streets in industrial areas, sidewalks in residential areas, and sidewalks on both sides of motorway traffic.
  • LED streetlights are more durable, longer lasting, efficiency, dimmable capacity and cost effective than traditional lights.
  • LED also enhances public safety by delivering superior visible light while providing the environmental advantage of using less energy.

(2) Color Rendering Index (CRI):

  • CRI Measures the ability of the artificial light to show or reproduce the colors of the road or objects on the road, relative to a natural light source.
  • The natural light source (the sun) has CRI of 100. The higher
  • This index the better the visibility will be. For all types of road CRI ≥ 70 is recommended.
  • Efficacy
  • At the low end LED efficacy starts at 70 lumens per watt (lm/W) and reaches as high as 150 lm/W.
  • While the mean efficacy for outdoor area fixtures is slightly lower than common indoor fixtures such as troffers and linear lighting about 100 lm/W for area lights compared to about 110 lm/W for troffers and linear fixtures this difference is not significant. It may be the result of outdoor area lights requiring more precise luminous intensity distributions and other factors unique to outdoor lighting.

(3) Fixture Protection:

  • When using sealed road lighting, the protection level of the light source cavity should not be lower than IP54.
  • For roads and places with dangerous environmental pollution and heavy maintenance, the protection level of the light source cavity should not be lower than IP65.
  • The degree of protection of the lamp electrical appliance cavity should not be lesser than IP43.
  • Lamps with excellent corrosion resistance should be used in areas or places with high levels of corrosive gases such as acid and alkali in the air.

(H) Effective Road Lighting:

  • Sufficient illumination.
  • Good uniformity.
  • No Glare.
  • Low consumption.
  • No Color Temperature abnormalities
  • No Zebra effect
  • Shielded lighting to ensure light is pointed downwards
  • Completely uniform illuminance.
  • No requirement for over lighting to obtain sufficient average illumination.
  • Absence of glare.
  • Absence of low angle radiation that causes sky glow.
  • Control of light trespass.
  • High redundancy.

Effective Road Lighting 

Features

Benefits

Proper pole height & spacing

 Provide uniform light distribution

Proper Luminaire aesthetics

 Blends in with the surroundings
Good maintenance

Reduce problems in lightning

High lamp efficiency

 Minimize energy cost

Life of Luminaire

Reduce lamp replacement cost
Good color rendering

 Helps object appear more natural

Proper light distribution

 Provide required light on roads

Cost effectiveness

 Lowers operating cost

Minimizing light pollution & glare

 Reduce energy use

Effective Energy-efficient Street Lighting Systems (NYSERDA, 2002)

Features

Benefits

Proper pole height and spacingProvides uniform light distribution, which improves appearance for safety and security Meets recommended light levels Minimizes the number of poles, reducing energy and maintenance costs
Proper luminaire aestheticsBlends in with the surroundings
High lamp efficacy and Luminaire efficiencyMinimizes Energy cost
Life of the luminaire and other componentsReduces lamp replacement costs
Cost effectivenessLowers operating cost
High Lumen MaintenanceReduces lamp replacement costs
Good color renderingHelps object appear more natural and pleasing to the public Allows better recognition of the environment, improves security
Short lamp Re strikeAllows the lamp to quickly come back after a power interruption
Proper light distributionProvides required light on the roads and walkways
Proper CutoffProvides adequate optical control to minimize light pollution
Minimizing light pollution and GlareReduces energy use
Automatic ShutoffSaves energy and maintenance costs by turning lamps off when not needed

Minimum Value of Street Light Designing

Descriptions

Min Value

Watt

400
Lumens Per Watt

80 To 140

Voltage

230Volt
Frequency

50 To 60Hz

Power Factor

  More than 95

THD

 < 20%
Life Hours

70,000 hours

Color Temperature

4000K  To  5000K

CRI

More than 75

Beam Angle / Beam Pattern

 Type 2,3,4,5
Operating Temperature

(-)25°C To (+)50°C

Working Humidity

10% To 90% RH
IP Rating

 IP67

Dimmable

0-10V

Optic Lens Material

High Polycarbonate (PMMA)
Forward Current

>600mA

Housing

IP65 – Aluminum Alloy and PC Lens

Dimension

 18.23″ X 13.58″ X 4.57″

Weight

 15.30 lbs – 34.39 lbs
Warranty

10 Years